
Documentation

Synnaxium Studio
Head office
99 A Boulevard Constantin Descat
59200 Tourcoing
(+33)3.74.09.69.80

Edimap - Documentation

SOMMAIRE
About 5

Getting started 6
Introduction 6
Palette 6
First prefabs 6
Edimap window 7
The grid 8
Pivot 11
Deletion (Ctrl + left click) 12
Optimization 12

MapGrid: Grid configuration 15
Grid Orientation 15
Color 16
Layer Height, Layer Min & Layer Max 16
Cell Size 17
Optimized Cell Size 18
Unoptimize On Edit 19
Optimize Automatically 19
Map Center Offset 19

Prefab configuration 20
Configuration levels 20

Global configuration 20
Palette configuration 21
Per prefab configuration 22

Default Map Object 23
Map Object Type 23
Size 24
Positioning 25
Selecting 27
Palette Sprite 28

Tiling 29
Introduction 29
Prefix 30
Tiles 32

Prefab 32

2

Edimap - Documentation

Flip 33
Rotation 33
Weight 33

Create a tiling (AUTO FILL usage) 33
AUTO FILL configuration 35

Flip X et Y 35
Reverse Self 36
Allow Rotation 36
Tiling Type 36

Full 36
Horizontal 36
Vertical 37

Joined tilings 38

The Edimap window 40
Grid 41
Edit 41

Brush 41
Hide Layer Below 41
Layer 41
Size X & Size Y 42
Shape 42

Palette 43
Folder 43
Object grid 43

Misc 44
Show Hotkeys 45
Detect Depth 45
Selection 45
Unoptimize On Edit 45
Optimize Automatically 45
Execute initialization scripts 45
Sort map hierarchy 45
Dangerous actions 45

SceneView 46
Preview 46
Focus, Rotations & Flip 46
Hotkeys 47

Execute a script while editing 48

3

Edimap - Documentation

MapObjectInit : Folder configuration 48
IMapObjectInit : Object configuration 49
AdaptativeSortingLayer 49
RendererOrder 51

Y Factor 51
Pivot Child Name 51

Optimization 52
Prefab design 52
Technical details 54
Usage 55
SpriteRenderer 56
Colliders 2D 56
MeshRenderer 56
BoxCollider 56

Customized grid 57
How it works 57
Coordinates 57
OnWorldToCell 57
OnCellToWorld 58
OnDraw 58
OnCellDelta 59
Example: Hexagonal grid 60

4

Edimap - Documentation

About
Edimap is both a map editor and a level editor. What do you think is the difference?
It's very simple: Edimap manages both the design of the environment and the integration

of the gameplay. To do so, Edimap proposes a management entirely centered around the
prefab.

At Synnaxium Studio, Edimap is our fundamental production tool, used on a daily basis to
accelerate the production of our various games (mainly Serious games).

Edimap is able to manage most of the problems you will encounter when developing
games based on a cell system, whether it is a platformer, isometric, 2D or 3D game.

We wish you a good reading!

Meet us on Discord !

https://discord.gg/tHWvyraN3B

5

https://discord.gg/tHWvyraN3B

Edimap - Documentation

Getting started

Introduction
The aim of this part is to allow you to use Edimap quickly without necessarily stopping on

the technical details.

Once you have taken Edimap in hand, the rest of the documentation will explain each
feature.

⚠ If you get an error on "group.Name", consider switching to C# 4.x or higher. The
future is now, old man!

⚠ If your project is using either URP or HDRP, you will need to change the materials
used for the previews (see Global configuration section).

Palette
Let's start by initializing the palette. The palette contains the list of prefabs that you will

be able to use during the creation of your map. This palette is materialized by a folder within
your project.

First create a folder, where you
want it, within your project. You don't
have to have this folder at the root of
the project.

ℹ Please note that Edimap does not
impose a particular path, so you can
create other subfolders for
organizational reasons.

First prefabs
For this part, we will limit ourselves to the simplest use case in order to be able to use

the tool quickly, namely 2D games.

Create prefabs with a SpriteRenderer component and place them in a subfolder of the
palette (in our example the subfolder has the path Assets/Palette/Cainos).

⚠ The subfolder is important, because the palette is made up of prefab folders.

6

Edimap - Documentation

We thank Cainos for allowing us to use their sprites. They are available in the following
folder :

Assets
↳ Synnaxium
↳ Edimap
↳ Examples
↳ Platformer 2D
↳ Graphics
↳ Cainos
↳ Pixel Art Platformer - Village Props
↳ Texture

In our example, we chose the sprites:

● TX Tileset Ground C TL
● TX Village Props Rock B
● TX Village Props Crate Large

Your first palette is now created. Of course, this first setup is very naive and won't take us
very far, but first things first.

Edimap window
Open a new Edimap window using the menu:

Window➜ Synnaxium Studio➜ Edimap

Edimap will appear at the same level as the
Inspector window, and you will see an information
message telling you that no map is present in your
scene.

So we start by creating a new one by clicking on
the Create map button.

7

Edimap - Documentation

From then on, a GameObject named "Map" appears in
your scene.

ℹ This is the main object used by Edimap to create a map,
the tiles you will add will be included in this object.

By default Edimap uses a predefined path
to locate your palette. If there is no palette in
the folder in question, an information
message will appear in the Edimap window.

At the same time, a warning should appear in your console:

In our example, we prefer to create our own configuration.

The grid
Once the previous step has been completed, you may notice that a reference to a

ScriptableObject has appeared.

This is the default grid used by Edimap, this
one points to the default folder.

8

Edimap - Documentation

We will replace this grid with a new one created specifically for our example.

For our first grid, we will use a grid to make rectangular shapes.

Start by choosing the folder in which you want to create the grid, then:

Right click➜ Create ➜ Synnaxium Studio➜ Edimap➜ Grids➜ RectGrid

ℹ You can create your grid at the location of your choice in the project.

ℹ A grid can be shared between several maps and each grid can point to its own palette.
This feature is very handy when it comes to keeping palette sizes reasonable. For
example, we could have one palette for the "Desert" biome and another one for the
"Forest" biome.

Once our grid has been created we will configure it using its Inspector.

Copy the path to your palette folder (not to be confused with the Cainos subfolder).

9

Edimap - Documentation

Then paste this path into the Palette Root Folder field of your grid.

Now go back to Edimap and select your newly created grid in the Grid field.

If everything has been done correctly, the palette should
now be displayed. If it is not the case, check that the path
entered in your grid is correct and that the folder of your
palette contains your SpriteRenderer prefabs, then click on
the ⟳ button on the palette

You are now ready to go.

Click on START EDITING and start placing your
different prefabs in the scene by left-clicking. Edimap
places in the scene the object currently selected in the
palette.

10

Edimap - Documentation

Pivot
The objects created by Edimap are placed in the center of their cell. We must therefore

take this into account for the pivot of our sprites.

In our case, we notice that the rock is not on the ground. To correct the pivot you just have
to :

➔ select the sprite of your rock,
➔ edit it by clicking on the Sprite Editor button of its Inspector,
➔ replace its Y value by 16 pixels, because the cell is 1 unit high by default, and the

sprite is set to 32 pixels per unit (16 pixels represents half of the cell).

Make the same correction for the crate sprite.

11

Edimap - Documentation

You will see that the rocks and crates are now correctly positioned on the ground.

Deletion (Ctrl + left click)
To delete an object placed on your map, simply hold down the Ctrl key on your keyboard

and left-click on the object in question, while in edit mode.

ℹ By default, if you create an object in a location where another object of the same type is
already present, the oldest one is deleted. To manage overlays, please refer to the
Map Object Type section.

ℹ It is also possible to directly remove a child GameObject from the "Map" object from the
SceneView, however we advise you to be careful when doing so.

⚠ If the map has been optimized (see next section), it is necessary to "un-optimize" it
before you can remove any tiles from it. The Unoptimize On Edit and
Optimize Automatically parameters of your grid are very useful for this.

Optimization
Now that you have succeeded in making your first map with Edimap, we will quickly see

how to optimize the rendering of the latter which, as it stands, uses far too much
SpriteRenderer.

12

Edimap - Documentation

We start by activating the Static option in all our prefabs.

Then we go back to our Edimap window:
➔ select the Misc tab,
➔ unfold the Dangerous actions section,
➔Click on the Optimize button in the Sprite Renderers section.

13

Edimap - Documentation

Your map is now optimized, you can see in Stats that now there are only 2 batches and 0
dynamic batching.

Congratulations, you have just created your first optimized map with Edimap.

However, this one remains very basic, the rest of the documentation will allow you to
make more complex maps by presenting you with options that we hope will meet your
expectations.

14

Edimap - Documentation

MapGrid: Grid configuration
To better understand map editing with Edimap, we will analyze step by step the

ScriptableObject RectGrid.

ℹ If you intend to use an isometric grid or a custom grid, we strongly advise you to follow
this analysis since the bases are identical between the different types of grids.

Grid Orientation
The orientation of the grid follows a coordinate system. Two coordinate systems are

available:
● XY➔ most often associated with 2D maps.
● XZ➔ generally used for 3D maps.

⚠ By default, Unity aligns sprites in XY.
Therefore, for sprites in XZ orientation, it is
necessary to add a 90° rotation in X in the
Prefab Transform in order to align the
rendering correctly.

15

Edimap - Documentation

Color
For visibility reasons, it is possible to define a custom color for the grid.

Layer Height, Layer Min & Layer Max
When working with Edimap you can place objects on different depth levels, called

"layers".

Each layer has its own depth in the scene space, which is equal to its index multiplied by
the Layer Height value.

In the case of an XY grid, the depth is located in Z. On the contrary, on an XZ grid, the
depth is along the Y axis.

The Layer Height parameter can be adjusted on existing maps without any danger.

16

Edimap - Documentation

The depth will be used to build floors for your map, for ground elevations or for buildings.

⚠ It is important to note that the elevation of decorations such as portraits hanging
on a wall should not be resolved by depth. It is preferable to have a prefab that includes
this elevation directly.

There are three parameters for configuring the "layer" within the grid:
● Layer Height➔ defines the distance between two floors.
● Layer Min➔ defines the minimum floor.
● Layer Max➔ defines the maximum floor.

ℹ The Layer Min and Layer Max fields delimit the number of floors available in a map.
They can be modified at will since they are not destructive. Their main interest is to avoid
manipulating a slider of 20 values when the map is composed of only 3 floors.

Cell Size
This parameter shapes the geometry of the grid by modifying the size of the cells.

A grid consists of cells and the size of a cell is defined by the Cell Size parameter. The
default value of 1x1 means that a cell measures 1 unit in the SceneView.

17

Edimap - Documentation

⚠ Be careful not to confuse the size of the grid cells with the size of an object that
can occupy several cells, these are two quite distinct concepts.

For example, an isometric grid is a grid of rhombuses where each rhombus, i.e. cell, has
an X size of 2 and a Y size of 1.

Optimized Cell Size
When Edimap optimizes the renderers and colliders of a map, it is not necessarily wise to

merge everything. This parameter is used to define the size of an area to be merged, in
terms of number of cells.

In the example opposite, the sprites and colliders
are optimized on surfaces of 10x10 cells.

ℹ By default, this parameter is set to 20 in X and Y..

ℹ Ideally, you should choose a size that represents a
quarter of a game screen.

18

Edimap - Documentation

Unoptimize On Edit
This option allows to remove optimizations from renderers and colliders automatically

when editing mode is enabled.

Optimize Automatically
Automatically optimizes renderers and colliders when editing mode is disabled.

Map Center Offset
This parameter is used to arbitrarily shift the origin of the card.

ℹ In edit mode, a point of the grid color represents the origin of the map in relation to the
selected layer. The shifted origin is represented by a point of the opposite grid color, and a
line is drawn between the two points to be fully aware of the difference..

ℹ By default, the (0, 0) coordinate is the bottom left corner of the (0, 0) cell.

⚠ This parameter does not allow you to correct the origin of an already existing
card, so you should think about choosing the value carefully before you start editing
your card. A solution to this problem would be to write a script to shift all the prefabs of
the map yourself.

19

Edimap - Documentation

Prefab configuration
So far, we have only used sprites with the default configuration.

But what if you want to have an object that doesn't fit in the middle of the cell? What if
we want to put several objects on the same cell? Or what if we want to place a large house
that occupies several cells?

No worries, everything is possible. We will see in detail how to achieve all this.

Configuration levels
Edimap allows you to configure your objects in a macro granularity, then by adding finer

and finer exceptions.

In case all your objects have the same behavior, you can configure everything at once. If
on the contrary your elements are complex and heterogeneous, you will be able to configure
Edimap as finely as you need.

Global configuration
Edimap has a global configuration within the package.

ℹ It is possible to create a new instance of this configuration in the Assets folder. This
instance will have priority over the configuration in the package folder.

Within this configuration, you will find a Default Map Object part which is the default
configuration used when creating a prefab within a palette.

This configuration indicates the default values, so it has the lowest priority, but is always
present.

20

Edimap - Documentation

Palette configuration
It is possible to override the global configuration for a folder and its subfolders. To do this,

simply add a ScriptableObject Palette Settings within it.

Right click in the folder➜ Create➜ Synnaxium Studio➜ Edimap➜ Palette Settings

It is also possible to override the configuration of a palette within one of its subfolders. To
do this, simply add a new Palette Settings within the subfolder concerned.

So you can have a folder "Props", and a sub-folder "Buildings" which will contain a
configuration for large objects.

This notion of folder configuration, inherited from the parent folders, allows you to
integrate 90% of your objects instantly by simply putting them in the right folders.

21

Edimap - Documentation

Per prefab configuration
Sometimes some objects are too specific, and it can quickly become tedious to have to

create an army of subfolders each containing a single prefab.
This is often the case for some very gameplay oriented concepts such as checkpoints and
spawns.

Fortunately, it is possible to overload the configuration directly within the prefab:
➔ create a child GameObject within the prefab,
➔ set it using the EditorOnly tag,
➔ add a MapObject component to it.

ℹ The EditorOnly tag ensures that this approach will have no impact within the
executable version.

⚠ However, there is a limitation to this approach: if the map is instantiated via a
prefab at runtime, then the EditorOnly tag will not work and the object will be present in
the build. This case will occur if you are working on a game containing a procedural
generation for a dungeon.

⚠ Configuration by the MapObject component always has priority.

22

Edimap - Documentation

Default Map Object

Map Object Type
The type of object is defined by an enumeration named MapObjectType.

These types are mainly used to solve overlapping objects. If you put a pebble or a tree on
the ground, you don't want the ground to be removed.

The type is also used when deleting manually (ctrl + left click), Edimap removes an object
of the same type as the object currently selected in the palette.

ℹ It is strongly advised to use as few types as possible and only one type per folder within
the palette to make your life easier when editing a map.

23

Edimap - Documentation

Size
This parameter defines the number of cells occupied by the object.

The size of the object makes it possible to manage overlapping and tiling for floors
composed of large tiles. This size is also used when you place several prefabs at the same
time.

An army of statues placed at once, without overlapping.

ℹ For performance reasons, the object is actually anchored on its bottom left most cell.

24

Edimap - Documentation

In this case, the new statue will replace the old one
because the bottom-left corner of the old one is included
in the tile of the new one.

In this other case, the new statue will overlap the old
one since it does not touch the bottom-left corner of the
old one.

ℹ In practice, this subtlety should not bother you. If despite all this behavior poses real
problems within your production, do not hesitate to contact us: Edimap's roadmap remains
active!

Positioning
Edimap manages three types of positioning:

● Normal➔ creates the object at the cursor position.
● Clamped➔ positions the object in the middle of the cell.
● Tiled ➔ allows you to position the object in the center of a cell while avoiding

overlapping.

In the case of objects of size 1x1, the Clamped and Tiled types will have the same
behavior, which will not be the case for larger objects.

25

Edimap - Documentation

In Clamped type for 2x2 objects, Edimap
allows overlapping.

In Tiled type for 2x2 objects, Edimap does not
allow overlapping.

For the Normal type, Edimap considers that
your prefabs have the same topology as decals:
overlapping is therefore allowed.

The example opposite, shows two rocks which
are on the same cell and which are overlapping
each other.

26

Edimap - Documentation

Selecting
During your tests with Edimap, you potentially noticed that you could not select all the

objects within the scene.

Nothing happens if you try to select a box.

Edimap proposes a working method by selection. In the Misc tab you can notice a
Selection option with several possible options.

In addition, each object has one of three selection types:
● Always➔ for gameplay oriented objects often selected by the level designer.
● Optional➔for configurable elements with very little handling.
● Never➔ for purely decorative objects that are part of the decor.

27

Edimap - Documentation

When you create a playable level, you will quickly end up with a cluttered hierarchy and
a scene where the selection is imprecise.

By taking care to choose the right type of selection for your prefabs, Edimap makes sure
that the level design stage is a real pleasure.

Palette Sprite
Edimap uses AssetPreview to get a preview of your prefab. Sometimes, the image

generated by it does not necessarily make sense for abstract concepts such as checkpoints.

This parameter is used to add an image for viewing the prefab within the Edimap palette.

28

Edimap - Documentation

Tiling

Introduction
When working with certain types of tile, such as walls, ladders, fences or land, we need

tiling to create a repeated pattern.

Examples of tiling for a 2D platformer.

To configure a tiling, we use a ScriptableObject Tiling.

Right click➜ Create ➜ Synnaxium Studio➜ Edimap➜ Tiling

As you can see the tiles are separated into several
groups according to the number of borders they
contain. There is also a Specials group but we will
come back to this later.

A large AUTO FILL button is also available. It will
allow us to automatically fill the tiling with the right
tiles according to a certain codification made possible
by the use of numerical prefixes.

29

Edimap - Documentation

Prefix
In order to be able to use the AUTO FILL feature, it is necessary to respect a

standardization based on the numeric keypad of a keyboard.

This standardization seems to us to be the most logical and simple.

1 bottom-left corner

2 bottom border

3 bottom-right corner

4 left border

5 no border nor corner

6 right border

7 top-right corner

8 top border

9 top-left corner

Corners are only used if the Use Inner Border option is enabled. The latter is most often
used in 3D, especially when a border is represented by a wall.

Use Inner Border enabled. Use Inner Border disabled.

30

Edimap - Documentation

A prefix always starts with "_" and can consist of several
numbers, so a tile with a name containing the prefix "_2468" will
be considered as a tile with 4 borders.

On the other hand, a tile with the prefix "_5" in its name is
considered to be a tile without any border, i.e. the tile that will
be in the center of 4 other tiles.

The numbers representing the prefixes, as well as a diagram
and a mini description, are visible in each group.

Among these groups is the Specials group, in which
the Do Not Disturb subgroup is found. The latter must be
filled in directly by hand by the user.

The tiles filled in this table will be considered as
neighbors of the tiling and will not be modified by it. This
can be very useful to add exceptions to the tiling, such as
a gate for example.

31

Edimap - Documentation

As you may have already noticed, it is possible to
have several tiles of the same type, i.e. several tiles with
a straight border for example (with the prefix "_6").
However, if all these tiles have exactly the same prefix,
only one will be taken into account by AUTO FILL.

In order for each tile to be taken into account you will
just have to add a lowercase letter, which will give such
tile names :

➔ TileName_6
➔ TileName_6a
➔ TileName_6b
➔ TileName_6c
➔ etc.

Tiles
A tile is nothing more and nothing less than a simple reference to a prefab.

In addition to the reference to the prefab, the
tiles used by tiling have several parameters.

The Prefab, Flip X, Flip Y and Rotation
parameters are usually automatically
completed by AUTO FILL.

Prefab
Reference to the prefab used by the tile. The name of the prefab and a preview are visible

when this parameter is set

ℹ The rendering of the preview may not be relevant because of AssetPreview.

32

Edimap - Documentation

Flip
This parameter indicates whether the tile is inverted on the horizontal (X) or vertical (Y)

axis.

Rotation
Rotation of the tile in relation to the pivot point.

Weight
When you have several possible tiles for the same configuration, Edimap will randomly

choose one of the possible tiles, weighting the chances by the value of this field. If a tile has
a value of 200 and another tile has a value of 100, they will have respectively 66% and
33% chance to be selected.

ℹ The default value is 100 for all tiles.

Create a tiling (AUTO FILL usage)
To create a tiling, the simplest method is to prepare a prefab directory containing all the

variations.

Each variation must be correctly normalized using a prefix as indicated in the Prefix
section.

After creating and naming your prefabs, add a ScriptableObject Tiling within the folder,
and click on the AUTO FILL button. You will be asked to select the directory where your
prefabs are located (the default path is the Tiling asset path). This manipulation allows you
to automatically pre-fill your Tiling.

33

Edimap - Documentation

For the tiling to be operational it must be referenced on a palette:
➔Create a new folder in the palette folder of your choice.
➔Add a prefab that will be used only to be displayed in the palette.
➔Also add a ScriptableObject Palette Settings.
➔ Select your tiling in the Tiling field of this ScriptableObject.

If you proceeded correctly you will see your prefab in
the corresponding palette. All you have to do now is test
your tiling to check if everything has been configured
correctly.

ℹ Two tiling of the same Map Object Type can be
placed side by side within the map.

34

Edimap - Documentation

AUTO FILL configuration
You will notice that there is a drop-down menu

named Settings under the AUTO FILL button of the
ScriptableObject Tiling. These are the settings used
for the auto-fill feature.

ℹ By default, the Settings drop-down menu is
deployed. Just click on Settings to hide or show its
content.

Flip X et Y
When you make a tiling, it is possible that your left edge prefab also works for the right

edge, once flipped.

If the Flip X box is checked, then AUTO FILL includes
horizontal inversions to fill the tiling.

So in the example on the left we notice that the tile with
the prefix _4 appears in tile category 6, and its Flip X
parameter is activated. We can also observe the opposite, tile
_6 in tile category 4.

The operation is the same for the Flip Y parameter but the
inversions are vertical.

ℹ The real interest of this option is to have only one prefab
to complete two categories of tile in the tiling.

35

Edimap - Documentation

Reverse Self
This parameter is activated when the same prefab can be present more than once for the

same configuration by inverting itself.

ℹ It is mainly used for "corridor" prefabs, i.e. prefabs with only two borders.

Allow Rotation
It works like the Flip but with rotations. As a result, a single tile prefab can complete

categories 2, 4, 6 and 8. The same prefab will be in each category but with a different
Rotation.

Tiling Type
A tiling type is required for AUTO FILL to be able to determine which tiles to add

automatically. There are 3 types of tiling:

Full
It is used when your pattern repeats itself both vertically and horizontally, which is often

the case for the floor.

Horizontal
This type is used for horizontal repetitions, in our 2D example we use it for platforms.

36

Edimap - Documentation

Vertical
It is associated with vertical repetitions, such as ladders or ropes.

As previously mentioned, AUTO FILL will complete
the missing tiles of certain categories, although the
prefabs used must be correctly named.

As an example, in our case we only need a bottom
border (2), a top border (8), a tile for the middle (5) and
optionally a tile for a ladder of a single cell (28).

In this way the missing configurations will be
completed by AUTO FILL.

37

Edimap - Documentation

Joined tilings
By default, tilings within Edimap do not interact with each other. In other words, if two

types of tilings are side by side, each one will close its respective edges.

In some cases, this behaviour is inappropriate. Let's consider this example with two
tilings :

Horizontal bridge tiling and full floor tiling.

The bridge has been designed to naturally extend the floor area, without seam:

The bridge and the floor interlock to create a homogeneous whole..

38

Edimap - Documentation

In this case, the floor tiling contains a "joint" to the bridge tiling, so the floor tiling does
not assign a tile with an edge when it is in contact with a tile of the bridge tiling. The bridge
is perfectly independent and places its edge despite the presence of the floor tile next to it.

The ground tiling has a reference to the bridge tiling in the Joined Tilings field.

Without this option set, the rendering would have been as follows:

Without joints, the tiling of the floor will create a border that is not desired here.

ℹ The joint is a very powerful tool that will allow you to create interior walls, roads,
bridges, and a whole bunch of complex repeated patterns.

⚠ If a tiling A includes a reference to tiling B:
➔ the tile of tiling A will not have a border,
➔ the tile of tiling B will have a border (if tiling B has no reference to tiling A).

39

Edimap - Documentation

The Edimap window
You can open a new Edimap window from the

Window menu:

Window➜ Synnaxium Studio➜ Edimap

ℹ Only one window can be displayed at a
time.

If no map has been created in the scene, a
Create map button will appear in the
window.

The latter allows you to create a new
GameObject "Map" in the SceneView
hierarchy. This object will be used as
reference of the map by Edimap, it will
include all the prefab and configurations
added by the edit mode.

40

Edimap - Documentation

Grid
This field is essential to be able to use Edimap. If no reference has been filled in, then an

information message tells you that this field must be filled in.

ℹ A default grid is referenced in this field when creating a new map.

The grid must be set up when the map is first created and before editing it. This grid must
not be modified afterwards. For more information on how to configure a grid, see the
chapter MapGrid: Grid configuration.

Edit
This tab allows you to access the editing parameters as well as the palettes defined by

the grid, but it also allows you to activate or deactivate the editing mode.

Brush
These options define where and how to edit the map, they allow you to manage the

brush parameters.

Hide Layer Below
Layers lower than the value defined by this field will be invisible. This avoids some

uncomfortable situations such as when you want to add an object on the first floor while the
second floor blocks the view.

Layer
Defines the desired depth of the object to be placed on the map.

41

Edimap - Documentation

Size X & Size Y
This is the size of the brush used to place or remove multiple objects at once.

ℹ When a brush of several cells is used, the tiling is not resolved within the preview.

Shape
Select the brush shape you are using.

ℹ You can implement new shapes by inheriting the BrushShape class. All basic shapes
are available in the folder:

Assets/Synnaxium/Edimap/Scripts/Impl/BrushShapes

⚠ Once you added or deleted it is recommended to click on the ⟳ button to refresh
available shapes.

42

Edimap - Documentation

Palette
This part gathers all the palettes and their elements that can be placed on the map.

ℹ A button to refresh the palette is available, it allows to take into account the
modifications of a palette or of a prefab in case it has been modified.

Folder
This is a list of the different palettes available. Simply select one of them to access its

contents.

As a reminder, these are the sub-folders directly under the main folder of the palette.

Object grid
The list of available prefabs from the current palette that can be selected to be placed on

the map.

ℹ At the bottom right, a slider allows you to vary the size of the
preview boxes of the prefabs in the grid.

43

Edimap - Documentation

Misc
Provides access to additional options and tools.

44

Edimap - Documentation

Show Hotkeys
If this option is enabled, the shortcut icons are visible on the

interface when editing mode is enabled, to remind the user of them.

ℹ The shortcuts are customizable, if you want to know more see the
Hotkeys chapter.

Detect Depth
Enables automatic detection of the layer on which to add the selected prefab when the

edit mode is activated. However, as soon as the Layer value is changed, this option is
temporarily disabled until a new edition is started.

ℹ This feature is used when several layers are available in the used grid, i.e. mainly when
editing 3D maps.

Selection
Allows you to choose what type of objects are allowed to be

selected in the SceneView. It is possible to choose more than one type,
or none by selecting None.

Unoptimize On Edit
Refers to the Unoptimize On Edit parameter of the grid currently referenced in Edimap.

Optimize Automatically
Refers to the Optimize Automatically parameter of the grid currently referenced in

Edimap.

Execute initialization scripts
This button executes all initialization scripts present in the SceneView. To learn more

about initialization scripts, refer to the chapter Execute a script while editing.

Sort map hierarchy
Rearranges the entire GameObject "Map" hierarchy in alphabetical order. This allows to

find more easily an object present in this GameObject.

Dangerous actions
These actions can potentially affect your map. Currently, this section only contains

optimization actions and their inverse, so we refer you to the Optimization section.

45

Edimap - Documentation

SceneView

Preview
When the edit mode is activated, several

changes can be noticed:
➔ an orange outline around the SceneView,
➔ indications on the placement of the prefab,
➔ an outline around the prefab of the defined

size,
➔ a transparent version of the prefab to

visualize the future rendering.

ℹ The visual of the prefab is made by creating a copy of it but without any MonoBehaviour
component. So the possible Awake methods, called in editor script via the
ExecuteInEditorMode attribute will not be called

Focus, Rotations & Flip
When editing the map, it is possible to focus on the preview, rotate or invert the prefab.

You can see in this example an illustration if a 180° rotation
and inversion, keyboard shortcuts are used to perform these
actions.

46

Edimap - Documentation

Hotkeys
Edimap provides a set of shortcuts for various actions in order to speed up the editing of

the map.

⚠ These shortcuts are only functional when the edit mode is activated.

The list of default shortcuts is as follows:

Raccourci Action Mémotechnique

Escape Exits edition mode

Space Focus on the preview

D Increases the layer D for Depth

Ctrl+D Decreases the layer D for Depth

H Increases the hidden layer H for Hide

Ctrl+H Decreases the hidden layer H for Hide

X Increases the brush size on X X for X axis

Ctrl+X Decreases the brush size on X X for X axis

C Increases the brush size on Y Is next to X

Ctrl+C Decreases the brush size on Y Is next to X

B Next brush shape B for Brush

Ctrl+B Previous brush shape B for Brush

V Next prefab

Ctrl+V Previous prefab

A Next palette folder

Ctrl+A Previous palette folder

F Flips the prefab F for Flip

R Rotates the prefab R for Rotation

ℹ You can customize these shortcuts by creating your own global configuration of Edimap
(see Global configuration). The Hotkeys group of the latter contains all the available
shortcuts and a button to restore the default values.

47

Edimap - Documentation

Execute a script while editing
When a new prefab is placed on a map via Edimap, it is possible to run a script to manage

an automatic configuration, such as:
● Ordering the sprites in a top-down 2D game.
● Automatically connecting a pair of teleporters.
● Automatically connecting a lever to a door.
● etc.

Since Edimap takes care of instantiating the prefabs, we have at the same time the
opportunity to execute code without depending on the ExecuteInEditMode attribute.

MapObjectInit : Folder configuration
Within your PaletteSettings, you will find an Inits array that can contain ScriptableObject

of type MapObjectInit.

You can create your own implementation by inheriting this script. For example, the code
below changes the color of the tiles according to their depth:

The grid argument is a description of the grid currently in use, while settings contains the
configuration of the object (positioning, number of cells used, type of object, etc.).

ℹ The scripts will be executed in the order of presence
within the array.

ℹ You will notice an Inherit Inits option within your
PaletteSettings. If this option is checked, the folder inherits
the initializations configured in the PaletteSettings of the
parent folders.

48

Edimap - Documentation

IMapObjectInit : Object configuration
You can inherit the IMapObjectInit interface on one of your MonoBehaviour:

Attach this MonoBehaviour to your prefab in a child's GameObject, adding the
EditorOnly tag, and you're done.

ℹ This operating mode is more intrusive because a modification of the prefab is required,
but the option is available if you have specific needs for a particular prefab.

AdaptativeSortingLayer
Edimap proposes an initialization process for objects dedicated to 2D maps with several

depths, called AdaptativeSortingLayer.

This initialization script is available in the asset creation context menu:

Create ➜ Synnaxium Studio➜ Edimap➜Map Object Inits➜ Adaptative Sorting Layer

The asset has a regular expression (regex) as a parameter that allows you to define the
syntax of your Sorting Layers.

49

Edimap - Documentation

By default, this regex will interpret Sorting Layers that end with a
depth number.

ℹ The regex must always retrieve the depth index under the group
name "layer".

Reference this initialization in the Inits array of your PaletteSettings and make sure that
your prefabs use one of the numbered Sorting Layers.

Thus, AdaptativeSortingLayer will take care of matching the Sorting Layers according to
the layer in which the prefab will be placed.

Illustration of the use of the example scripts DepthColor and AdaptativeSortingLayer.

50

Edimap - Documentation

RendererOrder
This initialization script is useful for 2D maps without using depth, especially for 2D top

view or isometric games. It automatically defines the Order in Layer parameter of the tiles
renderers according to their position.

Like the previous script, this one is available in the asset creation context menu:

Create ➜ Synnaxium Studio➜ Edimap➜Map Object Inits➜ RendererOrder

Y Factor
This is the factor by which the position of the sprite

will be multiplied to obtain the sort order.

Pivot Child Name
If a child exists and the name of the child matches,

then the script will use the Transform position of the child
instead.

In the example above, House 1 has a higher Order In Layer than Rock E, so it is displayed
above the latter. Yet both objects have the same Sorting Layer.

51

Edimap - Documentation

Optimization
Edimap uses a so-called prefab workflow, which means that a prefab is instantiated for

each cell of your game.

The huge advantage of the approach is that it allows you to have concrete concepts for
each part of your map: lava, doors, creatures, checkpoints, etc.

A classic tilemap would only give you an abstract representation of the environment, and
you would still have a lot of work to do to get a playable map. This is not the case with
Edimap, editing a map gives you directly the finished product.

Obviously, it is not possible to deliver a game where each cell is a prefab, there would be
tens of thousands of renderers and colliders, it would drop your performance.

The solution is to work in prefab, but to optimize the final rendering by merging the
renderers and colliders together in a second step.

Prefab design
When you design prefabs, several classic use cases can appear:

● The prefab is composed of a single renderer or a single collider.
● The prefab mixes several notions between rendering, collision and gameplay.

In the simple case, there is no special consideration other than to ensure that the prefab is
set as Static.

For prefabs mixing several responsibilities, it will be necessary to decompose into
children GameObject to allow Edimap to isolate the components.

52

Edimap - Documentation

For example, with the traps in the previous example, we will have two features. They
have a rendering with a MeshRenderer and will hurt the player if they step on them.

When Edimap will optimize this prefab, the tag of the GameObject containing the
MeshRenderer will become EditorOnly, so this object will not be present in the build.

However, we do not wish to lose the part that inflicts damage to the player.

To manage this, we need two GameObject:
● a parent who will take care of the damage,
● a child who will take care of the rendering and who will be potentially eliminated

from the build by Edimap.

An inherent advantage of this approach is the management of your pivots. The renderer
position can be adjusted easily by simply moving its local position.

Here this object "Grass" will be eliminated from the build entirely, because the root is the
collider which will be optimized.

Even without the excuse of the Collider on the parent object, it would have been quite
possible to simply put the root in EditorOnly anyway, knowing that we intend to optimize
the MeshRenderer in any case.

CAs our object will be converted into another mesh by Edimap, we have the advantage of
being able to add superfluous GameObject simply to correct the positioning of our objects,
which allows us to limit the round trips between the integration teams and the artists.

53

Edimap - Documentation

In the example above, our floors could quickly become hell to integrate. Here the ground
is composed of three parts that use two materials, which forces us to separate them.

Isometric rendering also imposes some particular constraints on the sprite positions in
order to automatically generate a correct rendering order.

A possible solution would be to impose on designers export in which the pivot is
automatically placed in the right place for each part. However, this creates a lot of
unnecessary transparency in the image files, and often wastes substantial time for designers
who do not necessarily have a perfect understanding of the technical constraints.

Here we can simply place the parts in the prefab ourselves with no extra costs involved.

Technical details
When you optimize a part of your map, be it SpriteRenderer or BoxCollider, Edimap does

the optimization in a similar way.

First, the relevant objects are switched to EditorOnly
and the optimized components are deactivated.

54

Edimap - Documentation

Secondly, a component is also attached to the object
so that Edimap can remember that the object has been
optimized.

In case you remove the optimization, this allows
Edimap to restore the old values.

⚠ Never delete this component yourself.

ℹ We have chosen to leave it visible so that you can
quickly identify why one of your components is disabled.

Finally, Edimap will add new objects
within your map, in a section with the same
name as the optimized component.

You will then see a set of GameObject
with no name, where each object is a
grouping optimized renderers or colliders.

Usage
From the Edimap window, it is possible to access the Dangerous actions section with the

Misc tab. This one groups the different possible optimizations with two buttons, one to
optimize the map and another one to remove the optimizations.

ℹ Automatic optimization or un-optimization
parameters are available via the MapGrid
Scriptable Object or in the Misc part of the Edimap
window.

ℹ To automate the process on a set of scenes,
you can use the Edimap API via the
BoxColliderOptimizer, SpriteRendererOptimizer,
etc. classes.

55

Edimap - Documentation

SpriteRenderer
SpriteRenderer optimization follows the same rules as Unity dynamic batching.

The conditions for merging two SpriteRenderer are:
● Same material with the same parameters.
● Rendering order that is not separated by a third incompatible SpriteRenderer.

Colliders 2D
For the BoxCollider2D, optimization is currently greedy, which means that the solution is

not strictly optimal, but largely sufficient.

Two BoxCollider2D will probably be merged if they can be perfectly encompassed by a
single BoxCollider2D by adjusting the center and size parameters.

For the PolygonCollider2D, we use the Clipper implementation which guarantees an
optimal solution. However, PolygonCollider2D inherently have poor performance within
Unity. It is therefore to be used in moderation, it is preferable to use BoxCollider2D as much
as possible.

MeshRenderer
All MeshRenderer will be optimized together if they use the same material with the same

parameters.

BoxCollider
Like the BoxCollider2D, two BoxCollider will be merged if it is possible to encompass

them exactly with a larger BoxCollider. The geometry is perfectly preserved, but the
solution is not necessarily optimal. However, the quality of the algorithm is largely
sufficient.

56

Edimap - Documentation

Customized grid

How it works
Edimap offers you two default grid types:

the rectangular grid and the diamond grid.

The rectangular grid allows you to make
squares and any rectangular shape, while
the diamond one allows you to make
isometric cells (an isometric grid is composed
of diamonds with cell sizes of 2 by 1).

These two grids may not correspond to your expectations, so Edimap provides an API to
create your own implementation. To do so, you just have to create a ScriptableObject script
inheriting from MapGrid, and fill in the abstract methods. Once your grid is created, you just
have to reference it in the Edimap window to use it.

ℹ Feel free to copy the code of Edimap's two basic grids for inspiration.

Coordinates
The Edimap grid always works with discrete coordinates which are represented by

Vector2Int.

Each cell within your grid must therefore be identified only by a pair of integers x and y.
Your grid implementation will mainly consist of establishing a function to move from this
pair of identifiers to a coordinate in space and vice versa.

ℹ Note that the notion of XY and XZ grid is not present in this API. To simplify your life,
this transposition is made separately.

OnWorldToCell
When you point with your cursor within the scene, Edimap infers a selected cell. This is

what allows you to place objects side by side without overlapping.

57

Edimap - Documentation

Parameter Type Description

position Vector2 The spatial position to be translated into coordinates.

return Vector2Int The coordinate to identify this cell.

OnCellToWorld
When Edimap wants to place an object in the scene, it will place this object on the

selected cell. It is then necessary to translate this coordinate into a point in space within the
scene.

Parameter Type Description

cell Vector2Int The coordinate of the cell.

return Vector2 The center of the cell.

OnDraw
Called when Edimap wants to display a preview of the grid for the user. The purpose of

this method is to return a list of points used to draw the lines of a cell.

OnDraw describes the green lines of the preview

The points are to be provided two by two within the list. Each pair of dots forms a line in
the scene.

58

Edimap - Documentation

Parameter Type Description

objectSize Vector2Int The size of the cell to be displayed (for objects that
extend over several cells)

cell Vector2Int The cell to preview. If the size of the object is more
than one cell, it is the bottom left most cell
(smallest x and y indices).

z float The depth at which the preview takes place. This
value must be injected into the z-component of the
points in the list.

return Vector3[] A table of points. Each pair of points will give a line.

OnCellDelta
OnCellDelta is used to define the distance between two cells when incrementing the

coordinates.

The brush uses OnCellDelta to offset the previews.

Parameter Type Description

x int The X coordinate shift

y int The Y coordinate shift

return Vector2 The resulting shift in spatial coordinates

59

Edimap - Documentation

Example: Hexagonal grid
Currently, the hexagonal grid is not yet implemented. Its integration is planned in the

near future depending on the interest of Edimap by the Unity community.

In the meantime, we can still quickly explain the process by schematizing the grid with its
axes and some coordinates:

The hexagonal grid can sometimes be scary, with its 6 neighbors per cell.

Mathematically, from Edimap's point of view, it is a very common 2D grid. The only real
subtlety is the positioning of the X axis which is 30° from the usual direction.

60

